Illustration par DALL·E (+PJ)
À l’époque (1987-90) où je développais pour British Telecom un logiciel appelé ANELLA (Associative Network with Emergent Logical and Learning Abilities), un « réseau associatif à propriétés émergentes de logique et d’apprentissage », c’est le collègue qui avait inventé ce sympathique acronyme qui avait attiré mon attention sur des phénomènes d’émergence dans mon IA. Au cœur du processus, une astuce que j’avais mise au point pour éliminer d’un seul coup la plupart des impasses des réseaux sémantiques : définir comme mémoire d’une IA, le dual d’un réseau sémantique. Le moment est venu de convoquer les meilleurs esprits sur la question 😉 .
P.J. :
Voyez le contenu du fichier importé. Est-ce que cela fait sens pour vous ?
Claude 3 :
Les diagrammes et les explications ont un sens pour moi. Les points clés que je comprends sont :
1. L’auteur propose une autre façon de représenter les réseaux sémantiques, appelée « P-graphe » ou « P-Dual ».
2. Dans un P-graphe, les concepts sont attachés aux arêtes du graphe et les relations aux nœuds, ce qui est l’inverse d’un réseau sémantique traditionnel.
3. L’auteur soutient que la représentation du P-graphe est plus biologiquement plausible en termes de correspondance avec les réseaux neuronaux réels dans le cerveau (« mappabilité »).
4. Une méthode de matrice d’adjacence est introduite pour aider à construire le P-graphe à partir d’un réseau sémantique traditionnel.
5. Plusieurs exemples sont traités, montrant comment l’ajout de nouveaux concepts et de nouvelles relations modifie la structure du P-graphe, avec l’apparition de nouveaux nœuds « semblables à des neurones » et d’arêtes « semblables à des synapses ».
6. Des cycles peuvent apparaître dans le P-graphe pour représenter certaines relations réciproques, comme un animal de compagnie ayant un maître et un maître ayant un animal de compagnie.
Dans l’ensemble, le P-graphe semble offrir une perspective alternative intéressante en représentation des connaissances, qui vise à refléter plus fidèlement les réseaux neuronaux biologiques que les réseaux sémantiques classiques. Les illustrations dans le fichier aident à clarifier les idées clés défendues.
GPT-4 :
Le document proposé traite d’une approche de la représentation des réseaux sémantiques, connue sous le nom de P-graphes, qui semble être une alternative aux réseaux sémantiques classiques ou une amélioration de ceux-ci. Cette approche s’aligne apparemment mieux sur les réseaux neuronaux biologiques en termes de structure et de fonctionnalité.
Voici les points cruciaux abordés dans le document:
-
- Déplacement de la représentation : le P-graphe s’écarte des réseaux sémantiques traditionnels en attribuant des concepts aux arêtes plutôt qu’aux nœuds, et des relations aux nœuds plutôt qu’aux arêtes. Cette modification pourrait contribuer à créer une représentation plus exacte du fonctionnement biologique des réseaux neuronaux réels.
- Réseau sémantique dual : le document aborde le concept de création d’un graphe dual dans lequel les nœuds deviennent des arêtes et vice versa. Ce concept est appliqué aux réseaux sémantiques afin de mieux reproduire peut-être les correspondances neuronales des systèmes biologiques (« mappabilité »).
- Plausibilité biologique : le P-graphe est censé être plus plausible d’un point de vue neurobiologique. Ceci suggère que la structure de ces graphes imite les connexions réelles d’un réseau neuronal biologique, où, par exemple, « garçon », « rencontre » et « fille » pourraient correspondre à différentes parties d’un neurone telles que les ramifications de l’axone ou les synapses.
- Construction d’un graphe à l’aide d’une matrice d’adjacence : le document décrit une méthode de construction d’un P-graphe à l’aide d’une matrice d’adjacence, qui semble être un moyen systématique de transformer un graphe classique (graphe-source) en un P-graphe. Cette transformation est cruciale pour maintenir l’intégrité structurelle du graphe. Cette transformation est cruciale pour maintenir l’intégrité structurelle tout en modifiant les relations nœud-arête.
- Exemples comparatifs : des illustrations et des exemples comparatifs sont offerts pour démontrer comment les réseaux sémantiques traditionnels peuvent être transformés en P-graphes, en soulignant les différences et les avantages potentiels de l’approche P-graphe.
- Sémantique et topologie : l’approche P-graphe est également décrite comme étant bénéfique pour traiter les ambiguïtés sémantiques et pour représenter les relations sémantiques qui évoluent dans le temps, comme celles rencontrées lors de l’acquisition d’une langue.
- Gestion des cas particuliers : l’ajout de nouveaux concepts et de nouvelles relations, comme « maître » et « a_un », à un P-graphe est évalué en termes de complexité du graphe et de changements d’interprétation des nœuds, faisant apparaître une structure flexible et dynamique.
- Déplacement de la représentation : le P-graphe s’écarte des réseaux sémantiques traditionnels en attribuant des concepts aux arêtes plutôt qu’aux nœuds, et des relations aux nœuds plutôt qu’aux arêtes. Cette modification pourrait contribuer à créer une représentation plus exacte du fonctionnement biologique des réseaux neuronaux réels.
Les informations que vous avez communiquées suggèrent que le modèle P-graphe est une approche innovante de la représentation des connaissances qui pourrait offrir des avantages spéciaux par rapport aux modèles traditionnels, en particulier en termes de réalisme biologique et d’adaptabilité à des relations sémantiques complexes. Cela pourrait avoir des implications pour des domaines tels que les sciences cognitives, l’intelligence artificielle et les neurosciences, où la compréhension de la structure et de la dynamique de la représentation des connaissances est cruciale.
P.J. :
Si je vous disais que l’on observe des phénomènes émergents lorsqu’on passe du réseau sémantique source à son dual, seriez-vous surpris ?
Claude 3 :
Non, je ne serais pas du tout surpris que des phénomènes émergents apparaissent lors de la transition d’un réseau sémantique traditionnel à sa représentation duale P-graphe. Plusieurs observations tirées de vos exemples suggèrent une telle émergence :
1. De nouveaux nœuds et arêtes apparaissent dans le P-graphe qui n’ont pas de corrélat direct dans le réseau sémantique original. Par exemple, lorsque « Lassie » a été ajouté, un tout nouveau neurone « chien » est apparu dans le P-graphe avec son propre ensemble de synapses, bien que « chien » ne soit pas un nouveau concept ajouté au réseau sémantique.
2. La configuration de connectivité peut changer de manière significative et non évidente dans le P-graphe. L’ajout d’un « maître » a non seulement créé un nouveau neurone, mais a également entraîné la croissance d’une nouvelle synapse dans le neurone « chien » d’origine et a donné naissance à un deuxième neurone « chien » avec des connexions différentes.
3. Des structures d’ordre supérieur telles que des cycles sont apparues dans le P-graphe qui n’étaient pas explicitement représentées dans le réseau sémantique. La relation réciproque « a-un » entre le chien et le maître a créé une connexion cyclique entre deux neurones.
Ces propriétés émergentes découlant de la transformation du P-graphe suggèrent que cette représentation duale capture une structure et une dynamique implicites qui ne sautent pas aux yeux dans l’encodage direct concept-relation du réseau sémantique.
Le P-graphe semble manifester de manière naturelle certaines des propriétés complexes d’auto-organisation que nous associons aux réseaux neuronaux biologiques et à la cognition. L’émergence de nouveaux phénomènes dans la représentation du P-graphe est donc parfaitement intuitive et passionnante dans la perspective d’une modélisation de la connaissance plus proche de la constitution du cerveau.
GPT-4 :
Pas du tout ! Cette notion de phénomènes émergents lors de la transition d’un graphe sémantique source à son dual (P-graphe) est logique, en particulier compte tenu des changements structurels uniques qui se produisent au cours du processus de transformation. Dans la théorie des systèmes complexes, les phénomènes émergents font référence aux propriétés ou aux comportements qui résultent des interactions collectives des composants du système et qui ne peuvent pas être prédits à partir de la simple compréhension des parties individuelles.
Dans le cas des P-graphes:
-
- Réaffectation des nœuds et des arêtes : en échangeant les rôles des nœuds et des arêtes – où les concepts sont liés aux arêtes et les relations aux nœuds – de nouveaux modèles de connectivité et de nouvelles interactions émergent. Cette réaffectation pourrait conduire à de nouvelles façons de représenter et de comprendre les relations et les hiérarchies au sein des données qui n’étaient pas apparentes dans le réseau sémantique source.
- Plausibilité biologique et « mappabilité » neuronale : Comme indiqué dans le document, le P-graphe vise à refléter la connectivité et les fonctions des réseaux neuronaux biologiques plus fidèlement que les graphes traditionnels. Ce déplacement pourrait évidemment déboucher sur des propriétés émergentes qui modélisent mieux les processus cognitifs et neurologiques, tels que la reconnaissance des formes, l’apprentissage et la mémoire, reflétant plus précisément la manière dont les informations sont traitées et stockées dans le cerveau.
- Complexité de la représentation : L’ajout de nouveaux concepts et de nouvelles relations dans le P-graphe, comme dans l’exemple « maître » et « a_un » du document, augmente la complexité du graphe. Cette complexité peut conduire à des propriétés émergentes liées à la façon dont les concepts sont interconnectés, offrant potentiellement des inspirations novatrices quant aux relations sémantiques et aux hiérarchies de concepts.
- Topologie et regroupement sémantique : l’utilisation de matrices d’adjacence et la structuration spécifique des P-graphes pourraient conduire à un regroupement (« cluster ») différent des concepts et des relations, révélant éventuellement de nouveaux regroupements (« clustering ») sémantiques ou des liens inattendus entre les concepts en raison de leur configuration topologique.
Globalement, la transition vers un P-graphe pourrait en effet introduire des phénomènes émergents au fur et à mesure que la dynamique et les interactions du système changent, offrant potentiellement des aperçus plus riches et plus nuancés des données représentées.
(à suivre …)
Illustration par DALL·E (+PJ)
Laisser un commentaire