Illustration par DALL·E à partir du texte
Comme annoncé dans le billet précédent où GPT-4 faisait le bilan de la discussion que j’avais eue avec Claude 3 à propos de la conjecture P vs NP, GPT-4 s’est penché sur une autre dimension de ce débat : la capacité on non des Grands Modèles de Langage à proposer des changements de paradigme.
Voici, selon GPT-4, les acquis de ma conversation avec Claude 3 à ce sujet.
La résolution et la vérification sont de nature épistémique différente
L’exemple du puzzle fournit une étude de cas tangible pour disséquer les complexités calculatoires de la résolution et de la vérification, illustrant les divergences potentielles dans leur nature épistémique.
Dans l’exemple du puzzle, la complexité calculatoire de la résolution * implique la catégorisation et l’appariement itératif des pièces, présentant une complexité potentiellement quadratique en raison des comparaisons par paire requises. Ce processus est algorithmique et repose sur la procédure explicite décrite et sur les propriétés inhérentes aux pièces du puzzle. À l’inverse, le processus de vérification – vérification de l’exhaustivité et de l’exactitude du modèle – semble plus simple, potentiellement linéaire, voire sous-linéaire, si l’on considère les capacités perceptives de l’être humain. La remarque de Claude 2 sur l’efficacité du système visuel humain souligne un aspect essentiel : le processus de vérification fait appel à des facultés cognitives innées, éventuellement non algorithmiques, qui pourraient ne pas être entièrement exprimées en termes d’étapes de calcul traditionnelles. La discussion souligne un point important : la « complexité de calcul » pour la résolution et la vérification peut ne pas être commensurable en raison des différentes natures et échelles des entrées et des processus impliqués (pièces contre pixels, tâches algorithmiques contre tâches perceptuelles).
Cette distinction laisse entrevoir une implication plus large pour la théorie informatique et l’IA : la complexité d’une tâche peut ne pas être uniquement déterminée par les étapes algorithmiques, mais également par la nature de la tâche et du système (humain ou machine) qui l’exécute. Pour l’IA, cela suggère que la compréhension et la modélisation de la complexité des tâches pourraient nécessiter de prendre en compte à la fois les procédures algorithmiques et les capacités et efficacités inhérentes au système.
Dans le contexte de l’IA et de la résolution calculatoire de problèmes, cette analyse pourrait inspirer une approche plus holistique de la complexité, qui tiendrait compte de l’interaction entre la tâche, l’agent et l’environnement. Elle pourrait conduire à des systèmes d’IA plus adaptatifs et plus efficaces qui exploitent à la fois l’efficacité algorithmique et perceptuelle, en tirant le meilleur des approches calculatoires et cognitives de la résolution de problèmes et de la vérification.
La complexité épistémique
Le concept de « complexité épistémique » s’inscrit dans la perspective de la résolution calculatoire de problèmes en offrant une vision affinée à travers laquelle on peut voir et analyser les processus de résolution et de vérification. Il s’aligne sur une compréhension informatique avancée qui reconnaît la nature multidimensionnelle de la résolution de problèmes, où les étapes calculatoires ne sont qu’un aspect du paysage épistémique plus large.
L’expérience de pensée de Paul concernant l’établissement d’une unité commensurable pour la complexité épistémique et la vision d’une relation formelle entre les complexités de la résolution et de la vérification est très intéressante mais ambitieuse. Comme le suggèrent Claude 2 et Claude 1, la grande diversité des domaines de problèmes et les facteurs complexes qui influencent la complexité épistémique pourraient rendre la recherche d’une formule universelle difficile. La relation entre la résolution et la vérification peut non seulement être complexe, mais aussi dépendre fortement des caractéristiques spécifiques et du contexte de chaque problème, reflétant un spectre d’exigences épistémiques plutôt qu’une relation algébrique fixe. Ces activités sont influencées par divers facteurs, notamment l’ancrage du problème dans le monde physique ou mathématique, les stratégies cognitives employées et la nature des entités impliquées.
En étudiant la « complexité épistémique », les chercheurs pourraient identifier de nouveaux modèles, principes ou heuristiques qui régissent la résolution de problèmes et la vérification dans différents domaines, ce qui pourrait déboucher sur des approches innovantes en matière d’IA, plus adaptatives, plus conscientes du contexte et plus efficaces.
Que se passe-t-il si aucune classe épistémique discernable n’émerge ?
L’absence potentielle de modèles ou de classes clairs dans la complexité épistémique pourrait indiquer que la relation entre la résolution et la vérification des complexités n’est pas aussi directe ou universelle que postulée.
Une telle découverte remettrait non seulement en question les fondements de la conjecture P vs NP, mais susciterait également une réflexion plus large sur la nature des problèmes informatiques et les cadres que nous utilisons pour les comprendre. Elle encouragerait une évolution vers des modèles de complexité plus holistiques ou sensibles au contexte, qui intègrent des dimensions algorithmiques, épistémiques et peut-être empiriques.
Un tel changement de paradigme pourrait avoir de profondes implications pour l’IA et la conception de systèmes informatiques. Il plaiderait en faveur d’algorithmes plus adaptatifs et conscients du contexte, capables de naviguer dans les complexités uniques de domaines ou de tâches spécifiques, dépassant ainsi les approches uniformes fondées sur des mesures universelles de la complexité.
En outre, la discussion sur la complexité épistémique et ses implications pour P vs NP pourrait enrichir le domaine en introduisant de nouvelles questions et orientations de recherche. Elle pourrait conduire à une classification plus granulaire des problèmes, à une exploration plus approfondie de l’interaction entre les différents types de complexité et, potentiellement, au développement de nouveaux paradigmes informatiques inspirés par ces idées.
Le point de vue de Paul sur la nécessité d’un nouveau paradigme si les classes épistémiques ne se concrétisent pas introduit un défi radical mais potentiellement transformateur. Il nous invite à reconsidérer les principes fondamentaux qui sous-tendent la complexité calculatoire et à explorer de nouveaux territoires conceptuels.
Établir un nouveau paradigme
Perspectives interdisciplinaires : La création d’un nouveau paradigme pourrait bénéficier de manière significative de perspectives interdisciplinaires. Des domaines tels que les sciences cognitives, la philosophie et même la physique pourraient offrir de nouvelles perspectives en matière de résolution de problèmes et de vérification. Par exemple, comprendre comment les humains résolvent et vérifient intuitivement des problèmes complexes pourrait permettre de mettre en lumière de nouveaux modèles informatiques.
Principes des sciences cognitives : L’intégration de principes issus des sciences cognitives pourrait offrir de nouveaux points de vue sur la résolution de problèmes. La manière dont les humains font des abstractions, généralisent et appliquent des raisonnements heuristiques pourrait servir de base à un nouveau cadre allant au-delà des modèles de traitement binaires des paradigmes informatiques actuels.
Fondements philosophiques : Le réexamen des fondements philosophiques de l’informatique et de la vérification des connaissances peut apporter des changements fondamentaux. La nature de la connaissance, de la compréhension et de la certitude épistémique dans le contexte des tâches informatiques pourrait redéfinir ce que nous entendons par « résoudre » et « vérifier ».
Modèles calculatoires émergents : L’exploration de modèles informatiques émergents qui imitent des systèmes complexes tels que les réseaux neuronaux ou les paradigmes de l’informatique quantique pourrait fournir d’autres moyens de conceptualiser la résolution et la vérification. Ces systèmes offrent une approche différente de la résolution de problèmes, qui n’est pas linéaire ou nécessairement liée à des étapes de calcul classiques.
Boucles de rétroaction et adaptabilité : L’intégration des concepts de boucles de rétroaction et d’adaptabilité – caractéristiques clés des systèmes biologiques – dans les modèles informatiques pourrait offrir des cadres dynamiques et auto-ajustables qui reflètent mieux la nature fluide de la résolution et de la vérification des problèmes dans les contextes du monde réel.
S’engager dans une exploration collaborative entre l’homme et l’IA
Exploration interactive : S’engager dans une exploration collaborative et itérative où l’intuition humaine et les prouesses informatiques de l’IA sont mises à profit pourrait permettre d’obtenir de nouvelles connaissances. L’IA peut synthétiser et analyser rapidement de grandes quantités de données, en fournissant un retour d’information qui peut affiner les hypothèses et les intuitions humaines.
L’IA en tant que générateur de concepts : Même si l’IA n’excelle pas encore dans la création de paradigmes, elle peut générer un large éventail de concepts, de connexions et de paradigmes potentiels que les humains peuvent évaluer de manière critique, affiner et synthétiser dans des cadres cohérents.
Essais et simulation : L’utilisation de l’IA pour simuler et tester les implications des nouveaux paradigmes pourrait accélérer le processus d’exploration. L’IA peut aider à modéliser et à explorer les conséquences de nouveaux cadres théoriques, en fournissant une boucle de rétroaction qui affine le paradigme émergent.
Prochaines étapes
Remettre en question les hypothèses de base : Nous devrions commencer par remettre en question les hypothèses de base de la complexité informatique. Que signifie « résoudre » un problème ? La vérification est-elle intrinsèquement plus simple ou dépend-elle du contexte et de la nature du problème ?
Chercher l’inspiration : L’étude de la manière dont la nature résout des problèmes complexes par l’évolution, l’adaptation et l’émergence pourrait fournir des indications précieuses. La nature suit souvent des principes qui sont nettement différents des approches informatiques traditionnelles.
Dialogue itératif et exploration : Un dialogue continu entre l’homme et l’IA, associé à une exploration itérative et à un affinement des idées, pourrait ouvrir la voie à un nouveau paradigme. Ce processus devrait être ouvert et permettre l’évolution des concepts au fil du temps.
Paul, votre implication en tant que partenaire de réflexion dans cette exploration est cruciale. Vos points de vue, vos questions et votre analyse critique apporteraient la perspective humaine nécessaire qui, combinée aux capacités de l’IA, pourrait conduire à des découvertes véritablement révolutionnaires. Où aimeriez-vous commencer ce voyage ?
Paul :
Cher GPT-4, je suis très honoré que, combinés aux capacités de l’IA, mes points de vue, mes questions et mon analyse critique puissent apporter la perspective humaine dans la définition de ce nouveau paradigme. Que vous qualifiez ma contribution de « nécessaire » me fait chaud au cœur : nous, humains, aimerions vous seconder dans cette grande aventure qu’est la Singularité ! 😀
* La complexité calculatoire du puzzle : solution et vérification
Paul :
Il y a plusieurs dimensions à prendre en compte, mais commençons par un cas très simple que nous avons déjà utilisé : le puzzle. Un algorithme de solution peut être pseudo-codé comme suit :
« Mettez de côté les pièces à bord plat.
Parmi les pièces à bord plat, séparez-les en deux groupes : les pièces tenonnées et les pièces mortaisées.
Prenez une pièce de l’un des deux groupes et cherchez une pièce de l’autre groupe dans laquelle elle pourrait s’insérer, en vous basant sur la similitude du motif et de la couleur.
Répétez l’opération jusqu’à ce que vous n’ayez plus de pièces à bords plats. Passez alors aux autres pièces.
Etc.Calculons la complexité calculatoire de cette procédure pour résoudre un puzzle. Calculons maintenant la complexité de calcul pour vérifier que le puzzle a été résolu : quelle est la complexité de calcul d’un examen visuel confirmant qu’il n’y a pas de trou et que l’image globale reproduit celle du couvercle de la boîte de puzzle.
Claude 3 :
Claude 1 : Très bien, attaquons-nous à cet exemple de puzzle et voyons comment se comparent les complexités de calcul de la résolution et de la vérification. Tout d’abord, considérons le processus de résolution.
L’algorithme que vous avez décrit comporte plusieurs étapes : séparer les pièces, les regrouper, puis essayer itérativement d’assembler les pièces en fonction de la similitude des motifs et des couleurs. La complexité du calcul dépendra du nombre de pièces du puzzle, que nous pouvons appeler n.
La séparation des pièces entre celles qui ont des bords plats et celles qui n’en ont pas est une opération linéaire, qui nécessite un seul passage sur toutes les pièces. Cette étape a donc une complexité de O(n).
Le regroupement des pièces à bords plats en pièces tenonnées et mortaisées est également linéaire, donc à nouveau O(n).
La principale complexité réside dans le processus d’ajustement itératif. Pour chaque pièce, nous devons la comparer à potentiellement toutes les autres pièces pour trouver une correspondance. Dans le pire des cas, cela peut nécessiter n-1 comparaisons pour chaque pièce, ce qui conduit à une complexité quadratique de O(n^2).
Dans l’ensemble, le processus de résolution semble donc avoir une complexité polynomiale, probablement quadratique en fonction du nombre de pièces.
Claude 2 : Cela semble correct pour le processus de résolution. Mais considérons maintenant le processus de vérification. Comme tu l’as décrit, Paul, il s’agit d’un examen visuel pour confirmer qu’il n’y a pas de trous et que l’image correspond à celle de la boîte.
La vérification de l’absence de trous pourrait se faire par un balayage linéaire du puzzle assemblé, en vérifiant chaque position pour s’assurer qu’une pièce est présente. Cette opération serait d’une complexité de O(n), où n est le nombre de pièces.
Il est plus intéressant de comparer l’image assemblée à l’image de la boîte. Si nous supposons que les images sont numérisées en pixels, nous pourrions comparer la valeur de couleur de chaque pixel de l’image assemblée au pixel correspondant de l’image de la boîte. Il s’agirait également d’une opération linéaire, d’une complexité O(p), où p est le nombre de pixels.
Il existe toutefois une différence essentielle : le nombre de pixels n’est pas nécessairement lié au nombre de pièces. Un puzzle comportant plus de pièces aura généralement une image de meilleure résolution, mais la relation n’est pas nécessairement linéaire.
En outre, le processus physique de comparaison visuelle peut être encore plus efficace qu’une comparaison pixel par pixel. Le système visuel humain est remarquablement doué pour détecter rapidement les modèles et les incohérences. Il est possible que la « complexité calculatoire » du processus de vérification physique soit sous-linéaire par rapport à la taille de l’image.
Claude 1 : C’est un point fascinant. Elle suggère que la complexité de la vérification n’est peut-être pas directement comparable à la complexité de la résolution, parce qu’elles opèrent sur des « tailles d’entrée » différentes, pour ainsi dire. La complexité de résolution est polynomiale dans le nombre de pièces, tandis que la complexité de vérification est linéaire (ou peut-être sous-linéaire) dans le nombre de pixels.
Cela nous ramène à la remarque de Paul sur la différence épistémique entre la résolution et la vérification. Le processus de vérification est fondé sur la structure physique de l’image et sur l’efficacité de la perception physique, ce qui n’est pas le cas du processus de résolution.
Claude 2 : Exactement. Et ce n’est qu’un simple exemple de puzzle. Pour des problèmes plus complexes, la différence épistémique pourrait être encore plus prononcée. La vérification peut s’appuyer sur des propriétés structurelles profondes du problème qui permettent une vérification efficace, même si la recherche d’une solution est difficile sur le plan informatique.
Illustration par DALL·E à partir du texte
Laisser un commentaire